

Post Graduate Research Laboratory IIT kanpur

Drugstore (Apotheken) Museum in Heidelberg, Germany

Rheology

to describe

deformation and flow behavior of all kinds of materials

rhei or rheo ... to flow

Rheometry

measurement of rheological data

Rheology

is used to arrange materials in order.

Let's go through our common household items and line up all that we can find:

on the left - the liquids

on the right - the solids

and in between - the semi-solid substances

The Rheology Road

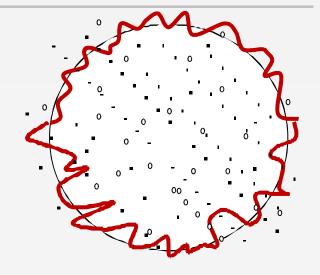
viscous viscoelastic elastic

liquids water, oils Viscosity Law

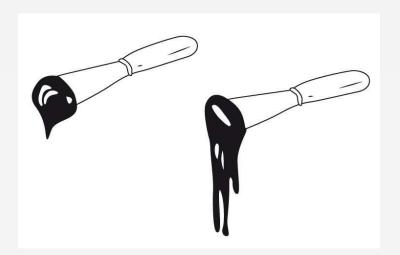
viscoelastic liquids glues, shampoos

viscoelastic solids pastes, gels, elastomers

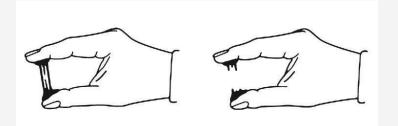
ideal-elastic solids stone, steel Elasticity Law


rotational tests

oscillatory tests

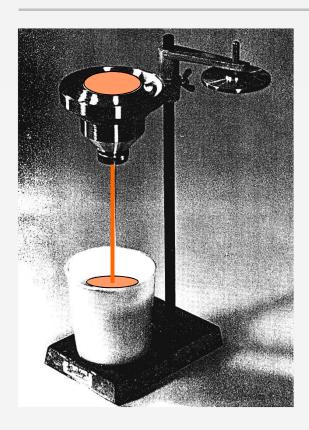

What is viscosity? Internal friction or flow resistance

between the molecules and particles, when gliding along each other in a flowing state (Newton in 1687: defectus lubricitatus)


2 Simple Viscosity Tests

Trowel test

highly viscous fluids: thick
 low-viscosity fluids: thin
 e.g. dispersions


Finger test

tacky: longless tacky: short

e.g. for adhesives, offset-printing inks, dough

2 Simple Viscosity Tests

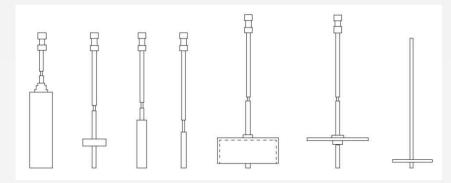
Flow cups

Measurement flow time of low-viscosity liquids

Result: **kinematic viscosity** weight-dependent viscosity

Examples: oils, solvent-based coatings, gravure and flexo printing inks

2 Simple Viscosity Tests


Rotational Viscometers

Preset: rotational speed

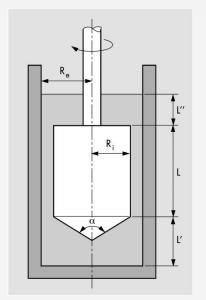
Measurement: torque

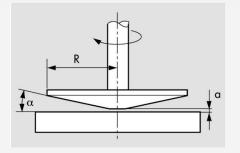
Example: ViscoQC by Anton Paar

Relative Viscosity Values

- ISO 2555
- ISO 3219-2

Typical Spindles:


- cylinders
- disks
- T-bars
- pins


3 Rheometers and Measuring Geometries

Absolute measuring geometries (ISO 3219-2 and DIN 53019)

concentric cylinders, CC low-viscosity liquids

cone / plate, CP liquids, dispersions limited particle size

Example: CP 25-1; $\mathbf{a} = 50 \, \mu \text{m}$, max. particle size 10 % of \mathbf{a}

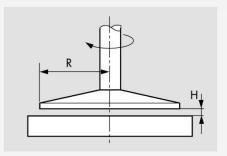
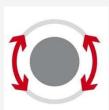


plate / plate, PP gels, pastes, soft solids, polymer melts

3 Rheometers and Measuring Geometries

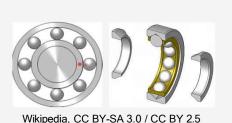


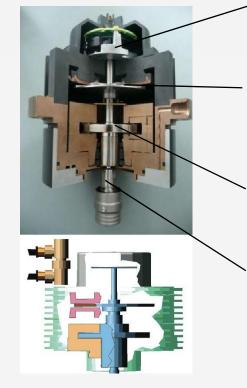
rotation

- shear tests
- tensile tests

oscillation

- shear tests
- torsional tests
- tensile tests


3 Rheometers and Measuring Geometries



Rheometers - each drive requires a bearing

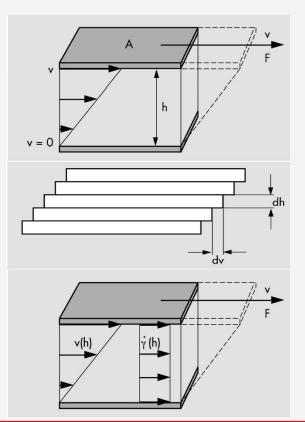
Ball Bearing

- inner ring (rotor)
- rolling element (e.g. balls, cylinders, cones)
- outer ring (stator)

1 Encoderopto-electronicaldetection of deflection angle

2 Measuring drive electro-motor, torque detection

aradial and axial: pressurized air between disc (rotor) and porous graphite (stator)


An air bearing is up to 400 000 times more sensitive than a ball

bearing!

4 Motor shaft coupling for measuring geometries

4 Definitions: Shear Stress, Shear Rate, Viscosity

The two-plates model

shear stress
$$\tau = F/A$$

unit: $1 \text{ N} / \text{m}^2 = 1 \text{ Pa}$

$$\dot{y} = v/h$$

unit:
$$1 \text{ m / (s2m)} = 1 \text{ / s} = 1 \text{ s}^{-1}$$

Requirement: Laminar flow in contrast to Turbulent flow

$$\dot{y} = dv / dh = const / const = const$$

4 Definitions: Shear Stress, Shear Rate, Viscosity

Isaac Newton (1643 to 1727) wrote about the flow resistance of fluids (e.g. of air and water).

This was later known as:

Viscosity Law "of Newton"

was formulated in the 19. century
(e.g. by G.G. Stokes in 1845).

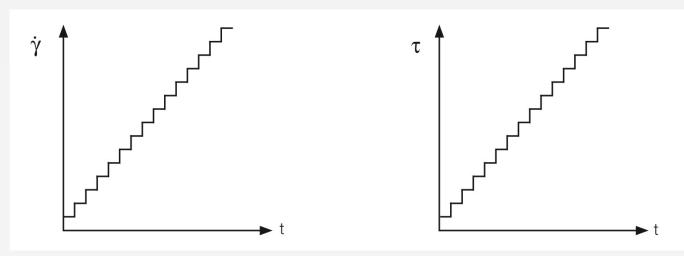
(shear) viscosity

$$\eta = \tau / \dot{y}$$

unit: 1 Pa / (1/s) = 1 Pas = 1000 mPas

Previously used unit (not SI): 1 cP (centi-poise) = 1 mPas

5 Rotational Tests

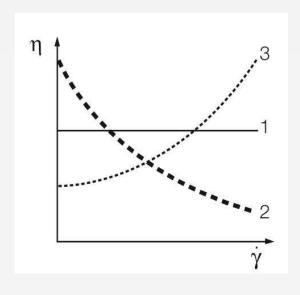

rotation CSR controlled shear rate	test preset		result	
raw data	rotational speed r	n [min ⁻¹]	torque M	[Nm]
rheological parameters	shear rate y	[s ⁻¹]	shear stress τ	[Pa]
rotation CSS controlled shear stress	test preset		result	
	test preset torque M	[Nm]	result rotational speed	n [min ⁻¹)

torque M: 1 Nm = $1000 \text{ mNm} = 1,000,000 \mu \text{Nm} = 1,000,000,000 \text{ nNm}$

For each measuring geometry there are **two conversion factors**: $M \rightarrow \tau$ and $n \rightarrow \dot{y}$

5 Rotational Tests

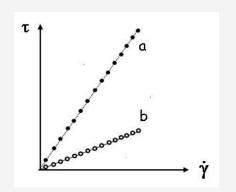
rotational speed preset

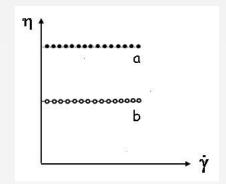

shear rate ramp
step-like upwards or downwards
CSR: controlled shear rate

torque preset

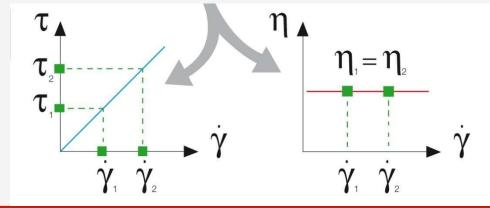
shear stress ramp step-like upwards or downwards

CSS: controlled shear stress

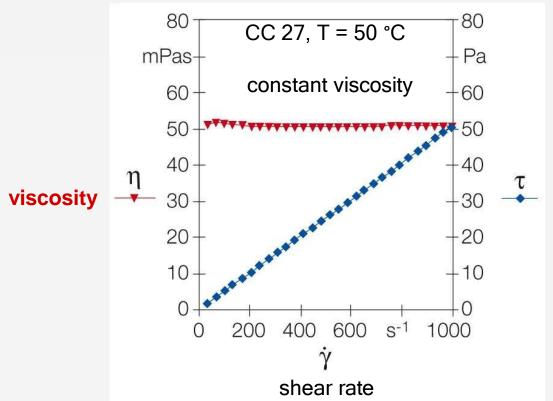

Viscosity curves


- 1 ideal-viscous
- 2 shear-thinning
- 3 shear-thickening

(Newtonian) (pseudoplastic) (dilatant)



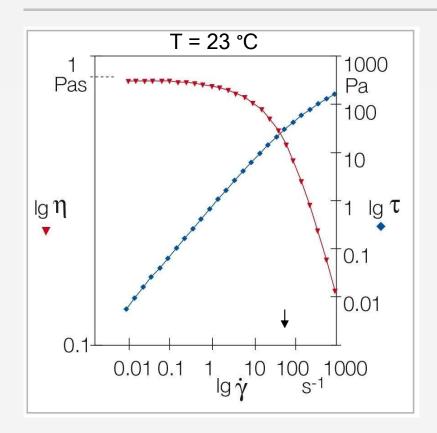
ideal-viscous / Newtonian flow behavior



flow curves

viscosity curves

Mineral oil



shear stress

concentric cylinders measuring geometry, CC

Wall paper paste

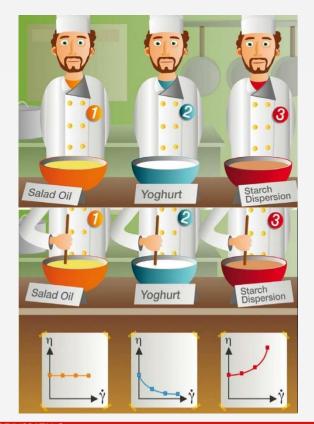
aqueous methylcellulose solution

uncrosslinked polymer

for \dot{y} < 0.1 s⁻¹ plateau of the zero-shear viscosity

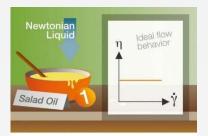
logarithmic scale focus on low-shear range

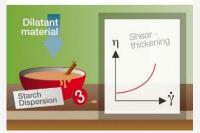
flow curves


η γ

- 1 ideal-viscous
- 2 shear-thinning
- 3 shear-thickening

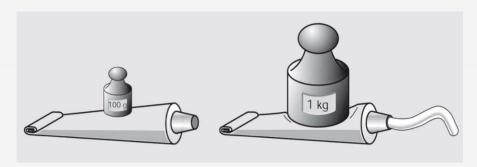
(Newtonian) (pseudoplastic) (dilatant)

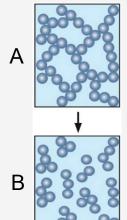

viscosity curves



Flow curves and viscosity curves

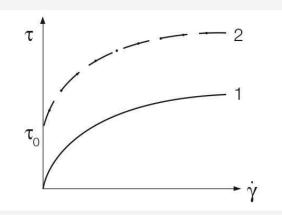
- (1) ideal-viscous
- (2) shear-thinning
- (3) shear-thickening





→ e-learning (the stirring chefs)

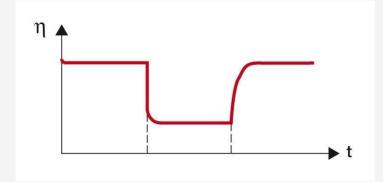
7 Yield Point



Yield point as the limiting value of the shear stress

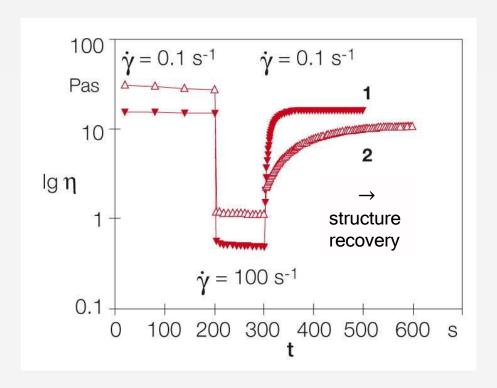
- (A) super-structure as a physico-chemical network of interactive forces
- (B) break of the structure-at-rest

Yield point determination via flow curves on a linear scale



- (1) without a yield point
- (2) yield point τ_0 as interception with the τ axis

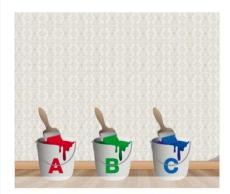
9 Time-dependent Behavior (Rotation)


Structure recovery, step test

Determination of **thixotropic behavior** (3ITT, 3 interval thixotropy test)

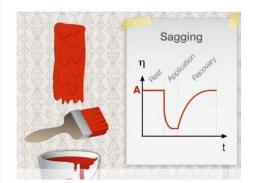
interval	preset shear rate	result	viscosity
1	low	(close to) state of rest	high
2	high	structure break	low
3	low	structure recovery	increasing

9 Time-dependent Behavior (Rotation)

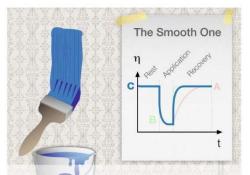


Coatings

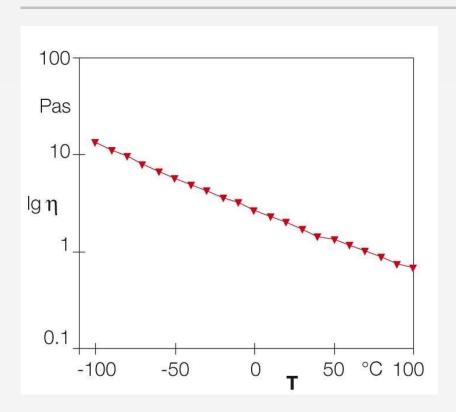
- (1) with gellant fast structural recovery
 - less sagging
 - high wet-layer thickness
 - maybe poor leveling
- (2) with viscosifier slow structural recovery
 - good levelling
 - · maybe too much sagging


9 Time-dependent Behavior (Rotation)





→ e-learning (brushing of 3 paints)



10 Temperature-dependent Behavior (Rotation)

Silicone oil

Heating: viscosity decrease

Without phase change:
Linear viscosity functions
in semi-logarithmic
log η / lin T diagram

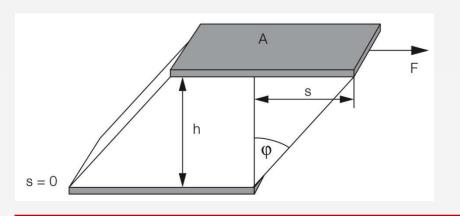
The Rheology Road

viscous viscoelastic elastic

ideal-viscous liquids water, oils Viscosity Law

viscoelastic liquids glues, shampoos

viscoelastic solids pastes, gels, elastomers


ideal-elastic solids stone, steel Elasticity Law

rotational tests

oscillatory tests

12 Definitions: Deformation, Strain, Shear Modulus

Two-plates model

shear stress

unit: $1 \text{ N} / \text{m}^2 = 1 \text{ Pa}$

 $\tau = F/A$

shear deformation or shear strain

unit: 1 m / m = 1 = 100 %

y = s/h

12 Definitions: Deformation, Strain, Shear Modulus

Robert Hooke (1635 to 1703), in 1676 he states for solids proportionality of force and deformation.

The later so-called **Elasticity Law of Hooke** was formulated in the 19. century (e.g. by T. Young in 1807, or A.L. Cauchy in 1827).

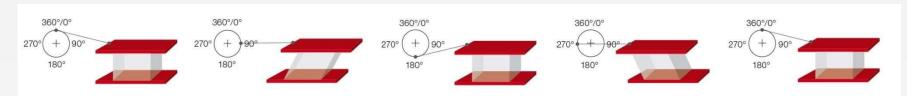
Shear modulus

$$G = \tau / y$$

unit: (1 Pa / 1 =) 1 Pa

 $1 \text{ GPa} = 1000 \text{ MPa} = 10^6 \text{ kPa} = 10^9 \text{ Pa}$

Giga-pascal, Mega-pascal, kilo-pascal


spring force F

deflection path s

spring constant C (stiffness)

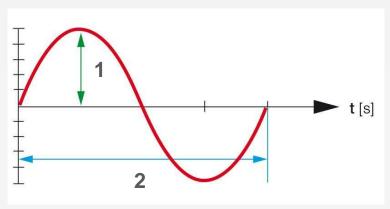
law of springs: F / s = C

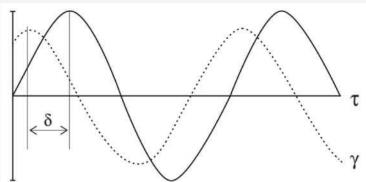
Two- plates model, equipped with two sensors,

top preset of deflection path (strain or deformation)


bottom measurement of resulting force (shear stress)

sinusoidal preset


ideal-elastic behavior


stiff sample (e.g. a stone or steel): no time shift between the sine curves of preset strain and resulting shear stress:

the curves of y and τ are "in phase"

Preset

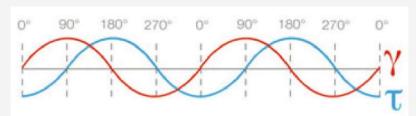
constant amplitude (1) and constant frequency (2)

Result

Most samples show viscoelastic behavior with a phase shift δ

between the maxima of the sine curves as the retardation of the measuring response compared to the preset.

ideal-viscous behavior


fluid, liquid: 90° $\delta > 45$ °

and


ideal-elastic behavior

solid, gel-like: $45^{\circ} > \delta$ [0°

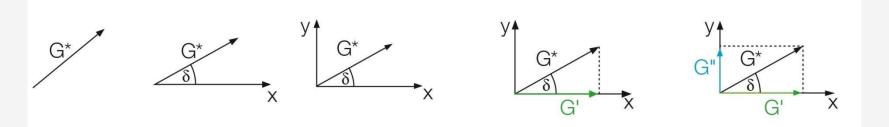
Illustrative concept: δ as the "street number in Rheology Road"

ideal-viscous: $\delta = 90^{\circ}$

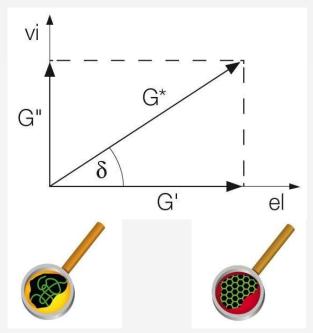
ideal-elastic: $\delta = 0^{\circ}$

32

Vector diagram


to determine the parameters G' and G" based on the Elasticity Law

- preset of y_A
- measurement of τ_A and phase shift angle δ (index A for amplitude)

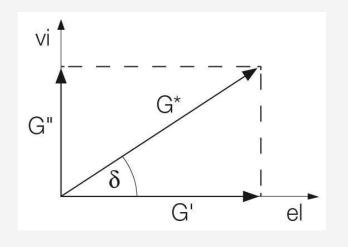

Calculation:

complex shear modulus G*

$$G^* = \tau_A / y_A$$

Molecules

left: freely moveable, uncrosslinked right: crosslinked


Vector diagram

- G* complex shear modulus, viscoelastic behavior in total
- G' (shear) storage modulus, elastic shear modulus
- G" (shear) loss modulus, viscous shear modulus
- G' (G-prime) for the stored,
- G" (G-double prime) for the **lost** (dissipated)

deformation energy

internal friction when flowing

 $tan\delta = G''/G'$

loss factor (or damping factor)

tangent delta unit: dimensionless (or 1)

"viscoelastic ratio" of viscous and elastic portions

use case point of phase transition

G' = G'' or $tan\delta = 1$ or $\delta = 45^{\circ}$

viscous	viscoelastic ela		elastic	
G" >> G'	G" > G'	G'' = G'	G' > G"	G' >> G"
liquid, flu	id state	sol / gel transition	gel-like, so	lid state

tanδ = G''/G'

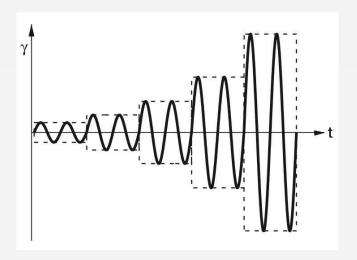
tanδ >> 1	tanδ > 1	$tan\delta = 1$	tanδ < 1	tanδ << 1
→ ?				→ 0

ideal-viscous: $tan\delta > 100:1 = 100$

for scientists: $tan\delta > 1000$

ideal-elastic: $tan\delta < 1:100 = 0.01$

 $tan\delta < 0.001_{36}$ for scientists:



Oscillation CSD contr. shear deformation	test preset		result	
raw data	deflection angle φ(t)	[rad]	torque M(t) phase shift δ	[Nm] [degrees]
rheological parameters	Deformation/strain y(t)	[%]	shear stress $\tau(t)$ phase shift δ	[Pa] [degrees]
Oscillation CSS controlled shear stress	test preset		result	
	test preset torque M(t)	[Nm]	result	[rad] [degrees]

 ϕ in degrees or in 1 rad; 360° corresponds to 2π rad

Preset

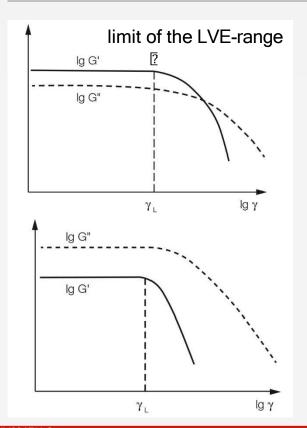
constant frequency

(e.g. angular frequency x = 10 rad/s)

variable strain (deformation)

strain sweep

or variable stress


stress sweep

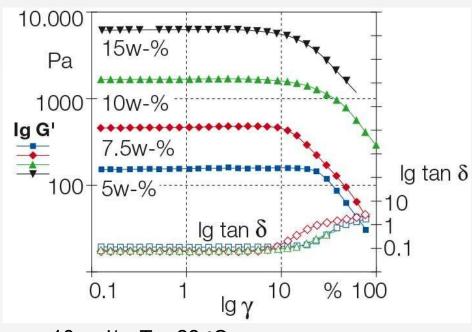
Frequency conversion: $x = 2\pi f$

with angular frequency X in rad/s (or s-1) and frequency f in Hz

Please note: Hz is not a SI unit.

Result

storage modulus **G'** (elastic behavior) loss modulus **G"** (viscous behavior)


limiting value of the linear viscoelastic (LVE-) range when reaching $y_{\rm L}$ linearity limit of shear strain

at **given** conditions, i.e., at the **preset** frequency

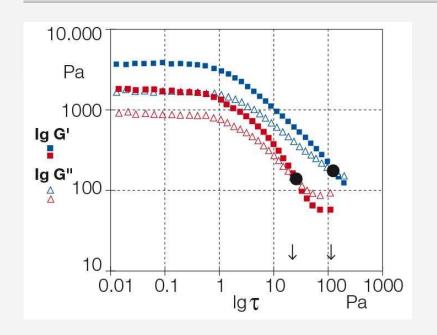
in the LVE-range

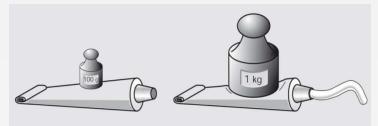
top: G' > G' (gel-like, solid structure)
bottom: G'' > G' (liquid, fluid structure)

 ω = 10 rad/s, T = 23 °C

Starch gels in water

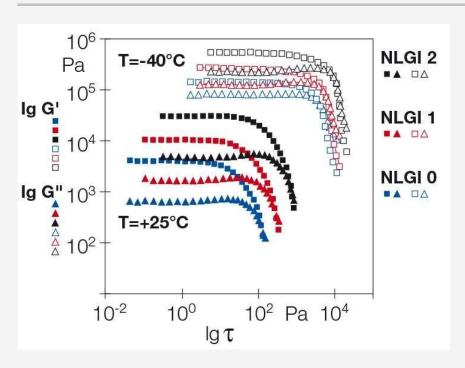
gel strength


as the G'-value in the LVE-range


First check:

LVE-range: $tan\delta < 1$ for all samples (= gel-like structure)? Yes!

$$tan\delta = G'' / G'$$

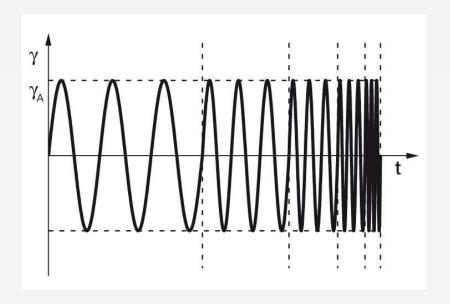


Tooth pastes

paste 1 $\tau_f = 125 \text{ Pa}$ flow point $\tau_f = 125 \text{ Pa}$ paste 2 $\tau_f = 24.9 \text{ Pa}$

the same yield point (linearity limit), but different flow points

Lubrication greases flow point τ_f acc. to DIN 51810-2 crossover point G' = G"



NLGI classification	T = +25 °C	T = -40 °C
NLGI 0	100 Pa	5 kPa
NLGI 1	200 Pa	7 kPa
NLGI 2	400 Pa	10 kPa

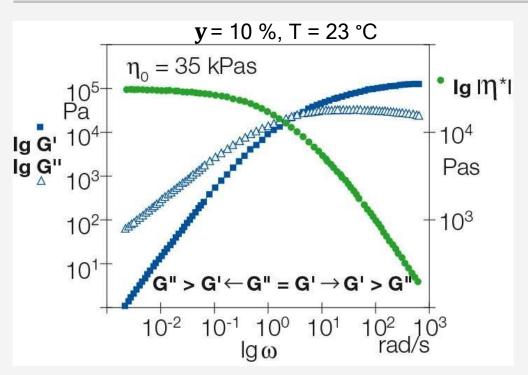
Consistency according to *NLGI*-classification (*National Lubrification Grease Institute*, USA) via pen-values, using a penetrometer

16 Frequency Sweeps

Preset

constant amplitude

shear strain (or shear stress) within the LVE-range


and

variable frequency

Precondition: LVE-range has been checked by an amplitude sweep.

16 Frequency Sweeps

PDMS polydi-methyl siloxane

typical behavior of uncrosslinked polymers showing a crossover point G' = G"

Thank you.